DERIVING FUNCTIONAL RELATIONSHIPS BETWEEN ENVIRONMENTAL FACTORS AND SOIL ORGANIC CARBON STOCKS

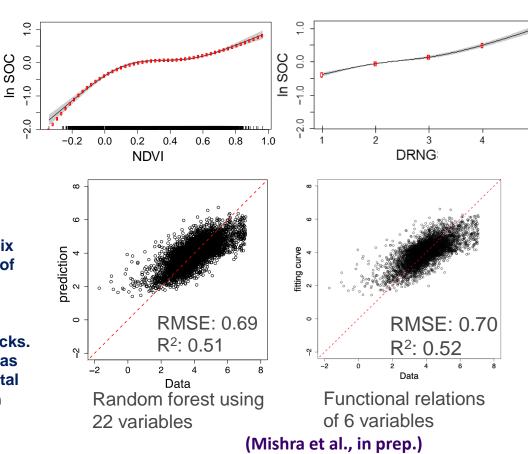
UMAKANT MISHRA¹, W.J. RILEY² & F.M. HOFFMAN³

- ¹Bioscience Division, Sandia National Laboratory.
- ²Earth Sciences Division, Lawrence Berkeley National Laboratory.
- ³Computational Sciences & Engineering Division, Oak Ridge National Laboratory.

SCIENCE MOTIVATION AND SUMMARY

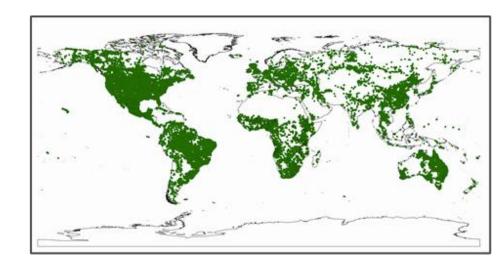
MOTIVATION

 Current generation of earth system models poorly represent the magnitude and distribution of baseline soil organic carbon (SOC) and show a large uncertainty in future carbon climate feedback projections.


APPROACH

- Datasets of environmental factors (n=31)
- Field observations of SOC (6,213)
- Machine learning and generalized additive modeling (GAM)

OUTCOMES AND IMPACTS


- Machine learning and GAM models identified six environmental factors as important predictors of SOC stock.
- Derived functional relationships of these six environmental factors explained 52% of the observed variability of continental US SOC stocks.
- Functional relationships we derived can serve as important benchmarks to evaluate environmental control representations of SOC stocks in Earth System Models.

ENERGY

FUTURE RESEARCH (3-5 YEARS)

- Use machine learning to identify environmental drivers of SOC stocks both in observations and CMIP model datasets.
- Derive functional relationships of environmental factors both in observations and CMIP model datasets.
- Evaluate the similarities and differences in derived relationships between observations and model datasets.
- Explore the global and continental scale SOC dynamics.

- ~110,000 SOC profile observations
- 62 Environmental factors

RELATIONSHIP TO WHITE PAPER

Our future research activities addresses both short (SOC dynamics) and long-term (data model inter comparison) research goals identified in the "Ecosystem Responses and Feedbacks" white paper.

